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Status of Ground-Water Modeling 
in the U.S. Geological Survey

BY CHARLES A. APPEL AND JOHN D. BREDEHOEFT

ABSTRACT

The U.S. Geological Survey is active in the develop­ 
ment and use of models for the analysis of various types' 
of ground-water problems. Types of problems for which 
models have been, or are being, developed include: (1) 
ground-water flow in saturated or partially unsaturated 
materials, (2) land subsidence resulting from ground- 
water extraction, (3) flow in coupled ground water- 
stream systems, (4) coupling of rainfall-runoff basin, 
models with soil moisture accounting and aquifer flow 
models, (5) interaction of economic and hydrologic con­ 
siderations, (6) predicting the transport of contami­ 
nants in an aquifer, and (7) estimating the effects of 
proposed development schemes for geothermal systems. 
The status of modeling activity for various models is re­ 
ported as being in a developmental, verification, opera­ 
tional, or continued improvement phase. Recently pub­ 
lished references that provide useful details on the 
characteristics of the models are identified.

INTRODUCTION

The use of models to aid in the analysis of 
ground-water problems has increased signifi­ 
cantly in recent years. Both the applied re­ 
searcher interested in establishing theoretical 
relationships of the dependence of a solution 
on problem variables and the field hydrologist 
interested in developing the capability to pre­ 
dict effects of stresses on an aquifer system 
find models useful.

HISTORICAL BACKGROUND

The U.S. Geological Survey (USGS) has 
contributed significantly to the development 
and use of models for the analysis of ground- 
water problems. The history of its contribu­ 
tions goes back at least as far as C. S. Slichter's 
classic analysis of the mathematics of steady- 
state flow through porous media, which was 
published in the U.S. Geological Survey's 19th

Annual Report, 1897-98. C. V. Theis' develop­ 
ment of the nonequilibrium formula for tran­ 
sient ground-water flow toward a discharging 
well in a confined aquifer, published in 1935 *, 
is credited as being "one of the most important 
recent milestones in the development of 
ground-water hydrology." 2 This paper pre­ 
ceded a similar analysis of transient condi­ 
tions in an infinite aquifer by petroleum reser­ 
voir engineers.3

Following Theis' 1935 paper, a number of 
analytical solutions were developed for differ­ 
ing geologic and pumping situations. These 
were closed-form analytical solutions. Although 
they often predicted the response of individual 
wells accurately, they were much less effective 
in the analysis of aquifer systems. The closed- 
form analytical solutions generally require: 
(1) homogeneous and isotropic aquifer prop­ 
erties, and (2) simple aquifer geometry; but 
real aquifers commonly differ markedly from 
these idealizations.

In the early 1950's the pulsed resistor-capa­ 
citor (R-C) electronic network was developed 
as a direct analog for the equation of ground- 
water flow. A pulsed R-C network permitted 
solution of the general flow problem. Problems 
involving non-homogeneity, irregular bound­ 
ary geometry, and pumping complexity could 
be analyzed. Petroleum reservoir engineers 
also adapted R-C networks for analysis of

1Tbeis, C. V., 1935, Relation between the lowering of the 
piezometric surface and the rate and duration of discharge of a 
well using ground-water storage: Am. Geophys. Union Tram., 
pt. 2, p. 519-524.

3 Ferris, John G., and Sayre, A. Nelson, 1955, The quantitative 
approach to ground-water investigations: Econ. Geol., Fiftieth 
Anniv. Volume, 1905-1955, pt. II, p. 714-747.

3 Muskat, M., 1937, The flow of homogeneous fluids through 
porous media: McGraw-Hill Book Co., Inc., 763 p.



flow problems. Research in the Geological Sur­ 
vey improved the methodology by (1) high 
speed pulsing of the networks, thus reducing 
the data acquisition time needed to complete 
a model analysis, and (2) demonstrating that 
low-cost, low-precision components gave re­ 
sults compatible with the accuracy of hydro- 
logic data. With the development of the R-C 
network, most linear ground-water problems 
involving the flow of a single fluid could be 
readily solved in two or three space dimen­ 
sions. The Geological Survey established an 
operational facility devoted exclusively to ap­ 
plication of this methodology to aquifer analy­ 
sis. About 100 hydrologic analog models have 
been developed and analyzed by Survey per­ 
sonnel in the past 15 years.

RECENT DEVELOPMENT

The R-C network is ideally suited for solv­ 
ing flow problems involving a single fluid of 
uniform density the usual ground-water sup­ 
ply problem. Most petroleum reservoir prob­ 
lems involve two or more fluids problems 
which are not particularly well suited to R-C 
analog solution. In the early 1950's reservoir 
engineers looked to numerical methods adapted 
for digital computers to solve large scale flow 
problems. Early numerical reservoir simula­ 
tors were severely limited by the size and speed 
of the digital computers of the period. By the 
late 1960's digital computers could compete 
with the analog for the solution of transient 
problems involving a few thousand nodes in 
two space dimensions. With today's digital 
computers and powerful numerical techniques, 
three-dimensional problems involving up to 
10,000 nodes can be solved. Nearly all of the of­ 
fices of the Geological Survey are now tied to 
a central computer through field terminals, 
and numerical ground-water models are used 
rather routinely for flow problems. Numerical 
models have been used for about 90 two-dimen­ 
sional flow problems in the past 6 years. Due 
largely to the widespread availability of the 
digital computer, numerical methods have re­ 
placed the analog in most applications. How­ 
ever, the analog model remains a very useful 
tool for problems involving large multi-aquifer 
hydrologic systems which must be simulated 
using more than 10,000 nodes.

With the development of high-speed com­ 
puters, it has become feasible to develop nu­ 
merical models that consider more realistic 
representations of complex hydrologic systems 
than was possible earlier. Types of problems 
that have been analyzed include: (1) flow in 
water-table aquifers in which relatively large 
changes in saturated thickness take place, (2) 
flow in unsaturated or- partially unsaturated 
materials, (3) nonrecoverable compaction of 
fine-grained materials in response to pumping- 
related stresses, (4) flow in coupled ground 
water-stream systems, (5) coupling of rainfall- 
runoff basin models with soil moisture account­ 
ing and aquifer-flow models, (6) interaction of 
economic and hydrologic considerations, (7) 
predicting the transport of contaminants in 
an aquifer, and (8) estimating the effects of 
proposed development schemes for geothermal 
systems.

Many of these types of problems require 
that more than one equation be solved simul­ 
taneously. For example, general transport 
problems require the coupling and simultane­ 
ous solution of the partial differential equa­ 
tions that describe three (or more) compon­ 
ents of a non-steady flow system. Typically, 
these would include, (1) an equation for pres­ 
sure, (2) an equation for heat, in terms of tem­ 
perature or enthalpy, and (3) an equation for 
the concentration of each chemical constituent 
of interest.

STATUS OF MODELING ACTIVITY

The Geological Survey continues to be active 
in modeling various types of ground-water 
problems. The status of our modeling activity 
is briefly summarized in the following table. 
With few exceptions the models handle tran­ 
sient conditions. Note that for many types of 
ground-water problems, models have been de­ 
veloped using more than a single solution 
technique. This is done so that the comparative 
strengths of different methods can be evalu­ 
ated and used to advantage. Such evaluations 
provide a rational basis for determining the 
method likely to be most efficient for particular 
types of problems.

Some comments are in order on the classifi­ 
cation of phases of modeling activity. To state 
that a model is in the "verification" phase is



intended, in most cases, to mean that develop­ 
ment of a basic computer program has been 
completed and tests are being made to de­ 
termine how well a model-derived solution 
represents the solution to the related differen­ 
tial equations used to describe the basic prob­ 
lem. For models of complex phenomena, the 
analog or numerical models often are tested 
by comparing the model results with analyti­ 
cal solutions. A difficulty here is that the most 
complex problem for which an analytical solu­ 
tion can be obtained usually is of trivial com­ 
plexity compared to the degree of complexity 
of problems for which the model is developed 
to handle. A method used to check the useful­ 
ness of a model for complexity typical of realis­ 
tic problems is to compare model-derived and 
observed responses to known stresses on the 
ground-water system for which the dependent 
variables and the system parameters are well 
known. In some cases, the required degree of 
certainty of these data in unavailable. In those 
cases one often relies on satisfaction of bal­

ance computations of mass, energy, and so 
forth to reflect the "correctness" of the com­ 
puted values.

Models in the "operational" phase are being 
used to evaluate field problems. In some cases, 
experimental work is being done on opera­ 
tional models to develop useful improvements 
in model accuracy, flexibility, or convenience 
of application.

In many cases, investigators other than 
those given in table 1 are, or have been, in­ 
volved in the listed modeling activity. The in­ 
vestigators listed can be contacted 4 for infor­ 
mation on the subject models beyond that 
given in available publications.

The "recently published" references noted in 
table 1 provide useful details on the charac­ 
teristics of the subject models and indicate the 
model capabilities. A more extensive, but not 
exhaustive, list of recently published references 
follows table 1.

4 The investigators can be located through the U.S. Geological 
Survey, Water Resources Division, National Center, Reston, Va. 
22092.
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